PROCEEDINGS

OF THE

BIOLOGICAL SOCIETY OF WASHINGTON

HARPACTICOID COPEPODS (CRUSTACEA) OF THE FAMILY TETRAGONICIPITIDAE LANG: A
 REVIEW AND REVISION, WITH KEYS TO THE GENERA AND SPECIES

By Bruce C. Coull Department of Biology, Clark University, Worcester, Massachusetts 01610

In recent years there have been many new species and two new genera described in the Tetragonicipitidae. Most of these new forms are from tropical and semitropical areas (Por, 1964; Wells, 1967; Geddes, 1968a; Coull, 1969, 1970, 1971), which appears to be the evolutionary center for this family. Por (1964) has previously commented on the confused systematics of this family, the need for its revision, and on the increasing numbers of known taxa, particularly from tropical areas.

In this paper I include a revision (where necessary) to the genera in the family and provide keys to the known species. Some genera are little changed since the last complete review (Lang, 1948), while others (Phyllopodopsyllus, for example) have changed so much that even Lang's recent (1965) key to the genus is outdated. Except where publication lag misses new species, this review is complete (to my knowledge) and includes every species described up through October 1972.

This review is based entirely on the literature. I have tried to borrow and examine one of two species considered incerta sedis in this paper, i.e., Phyllopodopsyllus pirgos Apostolov 1969. However, I have met with no success in my attempts to borrow this species and am, therefore, unable to redescribe it as originally planned. The second incerta sedis species, Phyllopodopsyllus tristanensis Wiborg 1964 is lost (see Wiborg 1964, p. 34) and must await rediscovery before inclusion in any revision.

2-Proc. Brol. Soc. Wash., Vol. 86, 1973

Each measurement used in this paper was recalculated by measuring the figures given in the original text. In caudal rami length/width ratios the width was measured at the widest portion of the ramus. The term caudal rami, not furca, is used after Bowman (1971). These measurements then, are not necessarily the same as listed by the authors or by those who cite the author, but are consistent throughout. The terminology used throughout is adopted from Lang (1948, 1965).

Family Tetragonicipitidae Lang 1948, Char. emend.
Tetragonicepsidae Lang 1948
Since Lang's (1948) familial diagnosis, several changes have been made, thus necessitating the following new diagnosis: Body elongate, more or less cylindrical. Female genital somite undivided dorsally. Caudal rami aberrant. Rostrum variable, from large and pointed to round and small to absent. Labrum very large. A_{1} of 5-9 segmented. A_{2} with basis. Exp. $A_{2} 1$ segmented, with 1-3 setae. Md. well developed with 2-3 setae on coxa-basis and separate Exp., Enp. fused or distinct. Mx. with 4-5 endites. Mxp. well developed, prehensile. P_{1} with 2-3 segmented Exp., when 3 segmented middle segment without inner seta; terminal segment with 3-5 setae. Enp. $P_{2} 2-3$ segmented, prehensile, 1st segment nearly as long as entire Exp. $\mathrm{P}_{2}-\mathrm{P}_{4}$ with 3 segmented Exp., l-2 segmented Enp. Setation of $P_{2}-P_{4}$ variable. P_{5} of distinct or confluent. Single ovary. $A_{1} \hat{o}$ haplocer. P_{2} or P_{3} or P_{4} or caudal rami may be dimorphic, or any combination of the above. of P_{5} always dimorphic. Benp. P_{5} ô fused, Exp. and Benp. confluent or distinct.

Key to the Genera of Tetragonicipitidae

1. Cephalothorax with 2 pointed posterolateral processes --------------------- Laophontella Thompson \& A. Scott 1903 Cephalothorax without posterolateral processes 2
2. Exp. A_{2} dwarfed, represented by a single seta

\qquad

Pteropsyllus T. Scott 1906
$\operatorname{Exp} . A_{2}$ well developed with 2 or 3 setae 3
3. First segment A_{1} with dentiform projection; Exp. P_{5} of 2 -seg- mented 4
First segment A_{1} without dentiform projection; Exp. P_{5} ô 1- segmented 5
4. Dentiform projection A_{1} at posterior distal corner pointing laterally Tetragoniceps Brady 1880
Dentiform projection A_{1} in middle of segment pointing mediallyFearia Coull 1971
5. First segment A_{1} shorter than second Diagoniceps Willey 1930
First segment A_{2} longer than second 6
6. Rostrum short, rounded; Benp. and Exp. P_{5} 우 confluent, foliaceous; Benp. P_{5} ô with 3 setae .--- Phyllopodopsyllus T. Scott 1906
Rostrum as long as first 2 segments A_{1}, and pointed at tip; Benp. and Exp. P_{5} ㅇ distinct; Benp. P_{5} of with 2 setae

Protogoniceps Por 1964

Laophontella Thompson \& A. Scott 1903

Type-species: Laophontella typica Thompson \& A. Scott 1903
Phyllopodopsyllus armatus Willey 1935.—Willeyella Por 1964
Remarks: This genus, with its three species, has been extremely problematical in any attempts to elucidate Tetragonicipitidae systematics (see Willey, 1935; Sewell, 1940; Lang, 1948, 1965; Por, 1964; Bodin, 1967; Geddes, 1968a; Coull, 1969). I suspect that the description of the type of the genus (Thompson \& Scott, 1903) is based on an immature female (e.g., bi-articulate P_{5}; uni-articulate P_{4} endopod, shortstout antennae). The unifying feature of the three species is the pointed-cephalo-thoracic processes, a distinctive generic character. I, therefore, refer the reader to Por's (1964) generic designation of Willeyella (a junior synonym for Laophontella) for the diagnosis, keeping in mind that L. typica officially exists as the generic type, but that the original diagnosis may not be accurate.

Geddes (1968a) has further suggested that the description of L. armata var. indica Sewell may also be based on an immature form.

Generic diagnosis: See Por (1964, p. 105 for Willeyella)

Key to the Females of Laophontella

$\mathrm{A}_{1} 8$ segmented, 1st segment prolonged with dentiform projection mid-way pointing medially; furca elliptical with spiniform projections laterally \qquad L. horrida (Por)
2. P_{5} foliaceous, comprised of single plate; 1st segment A_{1} greatly elongated and slender so that it is as long as 4 succeeding segments combined: Enp. P 2 segmented \qquad L. armata (Willey)
P_{5} with distinct baseoendopodite and exopod, lst segment A_{1} broad, 2 times as long as 2 nd segment, with small outer and inner projections; Enp. $\mathrm{P}_{4} 1$ segmented
L. typica Thompson \& A. Scott

Pteropsyllus T. Scott 1906, Char. emend.
Type-species: Tetragoniceps consimilis T. Scott 1894

Tetragoniceps T. Scott 1894

Remarks: Wells (1967) has recently reviewed this genus and suggests that it is monotypic, with P. consimilis (T. Scott, 1894) the only valid species. He asserts that P. plebius plebius Monard 1935, P. plebius furcatus Kunz 1938 and P. sp. Wells 1961 are all junior synonyms of

12 Proceedings of the Biological Society of Washington

P. consimilis due to the continuous variations which exist. I see no need to alter Wells' (1967) conclusions and concur that the genus is indeed monotypic. No key is given as the generic key serves to distinguish the species.

Alteration to generic diagnosis: Lang's (1948, p. 890) generic diagnosis should be altered to state that $\mathrm{P}_{\mathrm{s}} \hat{\delta}$ is variable and may have confluent or distinct exopodite and baseoendopodite (after Wells 1967).

Tetragoniceps Brady 1880, Char. emend.

Type-species: Tetragoniceps malleolatus Brady 1880

Remarks: There are currently 10 valid species in this genus. Since the last review (Lang, 1948), the following species have been added: T. truncata and T. longicaudata Nicholls (1939), T. arenicolous Krishnaswamy (1957), T. bergensis Por (1965), T. brownei Wells (1967) and T. bookhouti Coull (1971). Table I summarizes the data on the known species. Male characteristics are not included as the males are known in only 4 of the 10 species. A key to the 10 known species is given below.

Alteration to generic diagnosis: Many species described subsequent to Lang's (1948) monograph do not fit his generic diagnosis, hence I present a new generic diagnosis: Caudal rami variable, ranging from as wide as long to 10 times longer than wide. Rostrum small or absent. A_{1} ㅇ 8-9 segmented, first segment elongate with dentiform projection at posterior distal corner pointing laterally. Exp. A well developed, with 2 or 3 setae. Enp. Mxl. well developed. Mx. with 4 or 5 endites. Enp. $P_{1} 2$ segmented. Setal formulae variable (see Table I). $P_{5} \not q$ confluent or distinct. Setation on P_{5} 와 variable. P_{5} ô distinct in all known species. Sexual dimorphism in P_{2} or P_{2} and P_{3}, or caudal rami. $A_{1} \delta$ with or without dentiform projection.

Key to the Females of Tetragoniceps

3. Exp. portion P_{5} with only 1 well-developed seta .- T. malleolatus Brady Exp. portion P_{5} with 4 well-developed setae
T. dubius Thompson \& A. Scott

5. Middle segment Exp. $P_{3}-P_{4}$ with inner seta .----------------------------- 6

Middle segment Exp. $\mathrm{P}_{\mathrm{s}}-\mathrm{P}_{4}$ without inner seta
T. longicaudata Nicholls
Table 1. Genus Tetragoniceps-Summary of salient female morphological characters

Species	$\begin{aligned} & \mathrm{A}_{1} \\ & \text { No. } \\ & \text { seg. } \end{aligned}$	No. setae Exp. A_{2}	$\begin{gathered} \mathrm{P}_{5}-\text { Benp. } \\ \text { \& Exp. } \end{gathered}$	No. se Benp.	$\begin{aligned} & \text { tae } P_{5} \\ & \text { Exp. } \end{aligned}$	Caudal rami length/ width	Exp.	$P_{\text {Enp. }}$	$\begin{aligned} & \text { Setal fol } \\ & \text { Exp. } \end{aligned}$	$\begin{aligned} & \text { rmulae } \\ & \mathrm{P}_{3} \\ & \text { Enp. } \end{aligned}$	Exp.	Enp.
malleolatus Brady	8	3	confluent	4(5)	1	?	unknown		0.1.022	?. 121	0.1.221	1.120
dubius Thompson \& A. Scott	8	3	confluent	5	4	1:1	unknown		unknown		1.1.322	1.020
bookhouti Coull*	8	2	confluent	4(5)	4	4:1	0.1.122	1.120	0.1.122	1.120	0.1.122	1.120
brevicauda T. Scott	9	3	distinct	5	6	1.5:1			unkno	own		
scotti Sars*	9	3	distinct	4	6	3:1	unknown		1.1.122	1.120	1.1.123	1.120
truncata Nicholls	9	3	distinct	4(5)	6	1:1	1.0.023	1.120	1.0.023	1.120	1.1.223	1.120
	(truncate)											
longicaudata Nicholls	9	3	distinct	3	5	3:1	1.0.023	1.120	1.0.023	1.120	1.1.123	1.020
arenicolous Krishnaswamy	8	2	distinct	4	3	3:1	1.1.023	1.020	P 1.023	unknown	1.1.123	1.121
bergensis Por*	9	3	distinct	4	5	10:1	0.1.222	1.120	0.1.221	1.120	0.1.223	1.120
brownei Wells*	8	3	distinct	5	4	2:1	1.0.022	1.020	1.0.221	1.020	1.0.221	1.020

[^0]
14 Proceedings of the Biological Society of Washington

6. Exp. P_{5} with 3 setae; last segment Exp. P_{3} with 3 outer setae; Exp. A A_{2} with 2 setae arenicolous KrishnaswamyExp. P_{8} with 6 setae; last segment Exp. P_{3} with 2 outer setae;Exp. A2 with 3 setaeT. scotti Sars
7. Exp. P_{5} with 6 setae 8Exp. P_{5} with 4 setac; Fu. with prominent dorsal keel; dentiform
8. *C.R. truncate, broad at somitic attachment, rapidly compressed
T. truncata Nicholls
C.R. normal, gradually tapering T. brevicauda T. Scott C.R. refers to caudal rami

Fearia Coull 1971

Type-species: Fearia prima Coull 1971

Remarks: This monotypic genus is characterized by the medially pointing dentiform projection on the first segment of the female and male A_{1}. There is but one species in the genus, F. prima. The generic diagnosis must still be considered preliminary as it is based solely on the type-species (Coull, 1971). Except for the antennule spine, Fearia is very close to Tetragoniceps.

Diagoniceps Willey 1930, Char. emend.

Type-species: Diagoniceps laevis Willey 1930

Remarks: Since Lang's (1948) review of this genus, two species have been added, D. monodi Chappuis and Kunz (1955) and D. menaiensis Geddes (1968b), bringing to four the number of known species. Geddes (1968b) has discussed his unique species and compared it with the others in the genus. The 3 -segmented P_{1} makes D. menaiensis an enigma. For the time being, however, I agree with Geddes (1968b) and prefer to leave the species in Diagoniceps rather than create a new genus for it.

Alteration to generic diagnosis: With the addition of D. monodi and D. menaiensis, Willey's (1930, p. 94-95) and Lang's (1948, p. 894) generic diagnosis must be changed as follows: P_{1} of 2 or 3 segments; Exp. $P_{5}+\frac{1}{}$ with 5 or 6 setae.

Key to the Females of Diagoniceps

1. Enp. $P_{1} 2$ segmented 2
Enp. $P_{1} 3$ segmented

D. menaiensis Geddes
2. Inner edge of ${ }^{*}$ C.R. with small rounded projection: terminal
segment exopod P_{4} with 2 inner setae $-\cdots$. laevis Willey Inner edge of ${ }^{*}$ C.R. straight, terminal segment exopod P_{4} with 3 inner setae
3. Terminal segments exp. $\mathrm{P}_{2}-\mathrm{P}_{5}$ with 3 outer setae ..---... D. bocki Lang Terminal segments exp. $P_{2}-P_{4}$ with 2 outer setae \qquad

[^1]Phyllopodopsyllus T. Scott 1906, Char. emend.
Type-species: Tetragoniceps bradyi T. Scott 1892
Tetragoniceps T. Scott 1892
Paraphyllopodopsyllus Lang 1948
Remarks: Since Lang's (1965) revision and key, the following species have been added. P. danielae Bodin (1964); P. tristanensis Wiborg (1964); P. biarticulatus Wells (1967); P. ponticus Apostolov (1968); P. bahamensis Geddes, P. opististoceratus Geddes; P. parafurciger Geddes (1968a), P. pirgos Apostolov (1969), P. hermani Coull (1969), P. chavei Coull, P. paraxenus Coull (1970), P. parafurciger carolinensis Coull (1971). The female of P. longicaudatus A. Scott has been described by Vervoort (1964) and Marinov (1971) has redescribed the females of P. briani Petkovski and P. thiebauldi Petkovski. Challis (1969) mentions Phyllopodopsyllus sp. from the Solomon 1slands, but there is no description available to date.

Lang (1965) has recently discussed the genus and divided it into three groups: (1) with a strong unguiform projection on the second segment of A_{1}; (2) with a small, but not unguiform projection on segment 2 of A_{1}; and (3) with no projection on segment 2 of A_{1}. This third group had previously been designated a separate genus, Paraphyllopodopsyllus, but Lang (1965) asserts that the 2 genera cannot be kept apart, especially when one considers the many intermediate forms, and concluded that Paraphyllopodopsyllus must be withdrawn. This is the format that will be followed here; i.e., one genus with three groupings within the genus.

Table 2 lists the salient features for all the known species. Two recently described species (P. tristanensis and P.pirgos) deserve further evaluation. P. tristanensis is a taxonomic nightmare because the critical swimming legs are not included and the characters listed by Wiborg (1964) are of little taxonomic value. The description of P. pirgos, I suspect, is based on an immature (5th copepodite) male. This is particularly evident in Apostolov's (1969) figures of the swimming legs (the segments of which appear too broad and indistinct for the adult and show no sexual dimorphism) and the P_{5} which is still in the fused state. Nowhere else in the genus does a fused P_{5} occur although I have observed a similar morphology in stage 5 copepodites of my P. hermani. Furthermore, Apostolov (1969) does not figure or refer to the antennule (especially the critical unguiform process) except to mention that it is eight segmented. He then goes on to distinguish his P. pirgos from P. briani and P. thiebauldi on the number of antennule segments. However, he has compared the A_{1} of his male specimens to the A_{1} of Petkovski's (1955) female specimens. Apostolov's species (P. pirgos) must therefore be considered incerta and await redescription. Since Wiborg's species (P. tristanensis) is known only from his incomplete drawings and the types are lost, it too must be considered incerta sedis. Neither of
Table 2. Genus Phyllopodopsyllus-Summary of salient morphological characters. + or - in column listed C.R. dorsal keel, refers to the presence $(+)$ or absence (-) of a dorsal keel.

Species	Female										Male			
	No. seg. A_{1}	C.R. L/W ratio	C.R. 1° terminal seta	C.R. dorsal keel	Seta formulae						No. setae P_{5}		C.R. C.R. dorsal ratio keel	
					P_{2}		P_{3}		P_{4}					
					Exp.	End.	Exp.	End.	Exp.	End.	Ben	Exp.		
Process A_{1} large														
bermudae Lang	8	7.1	bulbous	-	1.0.122	0.3	1.0.222	0.3	1.1.322	1.3	3	5	8.5	-
bradyi (T. Scott)	9	1.4	bulbous	-	1.0.122	0.3	1.0.222	1.3	1.1.321	1.3	3	5	5.5	-
parabradyi Lang	9	1.4	bulbous	-	1.0.122	1.3	1.0.122	1.2	1.1.222	1.3	3	5	5.2	-
minutus Lang	8	5.6	non-bulbous	-	1.0.122	0.3	1.0.222	0.3	1.1.222	1.2	3	5	?	? ${ }^{1}$
furciger Sars	8	3.3	bulbous	$+$	1.0.122	0.3	1.0.222	1.3	1.1.322	$1.3{ }^{2}$	3	5	5.5	-2
aff. furciger Por	$8{ }^{3}$	3.0	bulbous	+	1.0.122	0.3	1.0.222	0.3	1.1.221	1.3		unk	wn	
borutzkyi Lang	9	2.0	bulbous	-	1.0.022	0.3	1.0 .022	1.3	1.0 .222	1.3	3	5	3.9	-
pauli Crisafi	8	1.6	bulbous (modified)	-	1.0.022	1.3	1.0.022	1.3	1.1.222	1.3	3	5	4.4	-
medius Por	84	2.0	bulbous	-	1.0.022	0.3	1.0.022	0.3	1.0.221	1.3	3	5	3.5	-
laticauda Por	84	1.4	bulbous	-	1.0.022	0.3	1.0.022	0.3	1.1.221	1.3		unk	wn	
minor (Thompson \& A. Scott)	8	3.8	non-bulbous	-	"Legs much the same as bradyi"							unk	wn ${ }^{5}$	
danielae Bodin	8	2.0	bulbous (modified)	-	1.0.022	1.3	1.0.022	1.3	1.0.322	1.3	3	5	2.8	-
chavei Coull	8	3.0	bulbous	-	1.0.122	1.3	1.0.222	1.3	1.1.222	1.3	3	5	unkn	own
hermani Coull	9	3.1	non-bulbous	-	1.0.022	0.2	1.0 .022	1.2	1.0.221	1.1	3	5	4.5	-
bahamensis Geddes	9	2.0	bulbous	+	1.0.022	0.3	1.0.022	0.3	1.0.222	1.2		unk	wn	
opistoceratus Geddes	9	3.2	non-bulbous	-	1.0.022	0.3	1.0 .022	0.3	1.0.222	3	3	5	5.9	-
longicaudatus A. Scott	9	5.1	bulbous	-	1.0.122	0.3	1.0.222	1.3	1.1.222	1.3	3	5	8.0	-

[^2]${ }^{14}$ This species is considered incertae sedis (see text).

Female											Male			
	No. seg. A_{1}	C.R. L/W ratio	C.R. 1° terminal seta	C.R. dorsal keel	Setal formulae						No. setaeP_{5}		C.R. ratio	C.R. dorsal keel
					P_{2}		P_{3}		P_{4}					
Species					Exp.	End.	Exp.	End.	Exp.	End.	Ben	Exp.		
parafurciger parafurciger														
Geddes	8	2.2	bulbous	-	1.0.122	0.3	1.0.222	1.3	1.1.322	1.3	3	5	7.3	-7
parafurciger carolinensis Coull	8	2.1	bulbous	-	1.0.122	0.3	1.0.222	1.3	1.1.322	1.3	3	5	7.3	-7
Small process A_{1}														
briani Petkovski ${ }^{8}$	9	4.0	non-bulbous	+	1.0.122	1.3	1.0.222	1.3	1.1.322	1.3	3	5	$4.0{ }^{9}$	+P9
hardingi (Roe)	9	2.7	non-bulbous	-	1.0.022	1.3	1.0.022	1.3	1.0.321	1.3	3	5	P10	-? ${ }^{10}$
No process A_{1}														
aegypticus Nicholls	9	1.6	non-bulbous	-	1.0.122	0.3	1.0.222	0.3	1.1.321	1.3		unk	wn	
thiebauldi Petkovski	9	1.6	non-bulbous	+	1.0.122	1.3	1.0.122	1.3	1.1.3-222	21.3	3	5	3.2	-
mossmani T. Scott	9	2.5	bulbous	+	1.0.022	1.3	1.0.122	1.3	1.0.322	1.3	3	5	2.2	-
paramossmani Lang	9	2.0	non-bulbous	?	1.0.022	1.3	1.0.022	1.3	1.0.222	1.3	3	5	?11	?11
berrieri Monard	9	3.3	non-bulbous	-	1.0.022	1.3	1.0.022	1.3	1.0.223?	1.3	3	5	4.7	-12
hibernicus (Roe)	9	1.3	non-bulbous	$+$	1.0.022	1.3	1.0.022	1.3	1.0.322	1.3		unk	wn	
xenus (Kunz)	9	2.1	non-bulbous	-	1.0.022	0.2	1.0.022	0.2	1.0.321	0.3		unk	wn	
paraxenus Coull	8	1.6	bulbous	$+$	1.0.022	0.2	1.0.022	0.2	1.0.321	0.2	3	5	2.0	-
ponticus Apostolov	9	2.0	non-bulbous	-	1.0.022	1.3	1.0.022	1.3	1.0.122	1.3	3	5	5.0	-
longipalpatus (Chappuis)	8	1.5	non-bulbous	-	1.0.022	0.2	1.0.022	0.2	? ? 321	1.2	3	4	3.1	-
biarticulatus Wells ${ }^{13}$	8	1.4	non-bulbous	$+$	1.0 .022	0.2	1.0.022	0.2	1.0.222	0.2	3	4	2.2	$+^{13}$
tristanensis Wiborg ${ }^{14}$	9	2.5	non-bulbous	?			unkn	own			3	5	3.1	-

${ }^{7}$ These 2 subspecies are separated on presence or absence of protuberance on inner margin of the caudal rami.
${ }^{8}$ Marinov (1971) does not figure the small process on the second antennal segment.
${ }^{9}$ Petkovski (1955) says the caudal rami the same as the female.
${ }^{11}$ Lang (1934) gives no figures, but states male caudal rami same as female.
${ }^{12}$ Male information from Pesta (1959).
${ }^{13}$ Wells' (1967) species is distinguished from all the others in the genus by a 2 -segmented P_{1} Exopodite and a small dorsal keel on the male caudal rami.

Proceedings of the Biological Society of Washington

these species is included in the key, although P. tristanensis is included in Table 2.

Since several males are unknown or very poorly described, the following key to the valid species is based on the females.

Alteration to generic diagnosis: Since Lang (1965) combined Paraphylloporlopsyllus with Phyllopodopsyllus, a new generic diagnosis has not been made and is required.

Generic diagnosis: Caudal rami aberrant, generally longer than wide. Rostrum small, separated from body. A_{1} \& 8-9 segmented, Ist segment longer than second. 2nd segment with or without dentiform projection. Exp. As well developed with 3 setae. Mxl. with separate Exp. and Enp. Mx. with 5 endites. Enp. P_{1} 2-segments; Exp. $P_{1}, 2-3$ segments. Exp. $P_{m}-P_{4}, 3$ segments, Enp. $P_{2}-P_{3}, 2$ segments; Enp. $P_{4}, 1-2$ segments. $P_{5}{ }_{q}$ large, foliaceous, Benp. and Exp. fused into single leaf-shaped plate. P_{5} ô with distinct Benp. and Exp., Benp. with 3 setae, Exp. with 4-5 setae. P_{2} or P_{2} and P_{3} dimorphic. क caudal rami aberrant, may or may not be different than ρ, always longer than wide.

Key to the Females of Phyllopodopsyllus

1. Second segment A_{1} with a conspicuous unguiform process .-.---.----- 2

Second segment A_{1} with a small not unguiform process _------------... 20

A_{1} of 8 segments
3. *C.R. with a large conspicuous lamellar expansion inside near base 4
C.R. with no or very slight lamellar expansion inside near base -. 5
4. 1st segment Enp. P_{2} without seta, last segment Enp. P P_{3} with 3 setae; last segment Exp. P_{3} with 6 setae P. bradyi (T. Scott) 1st segment Enp. P_{2} with seta, last segment Enp. P_{3} with 2 setae; last segment Exp. P_{3} with 5 setae P. parabradyi Lang

Principal terminal seta *C.R. bulbous at base .--------------------- 7
6. Enp. $P_{4} 1$-segmented with 3 setae .------------ P. opistoceratus Geddes Enp. Ps 2-segmented; last segment with one seta .- P. hermani Coull
7. *C.R. about 2 times as long as wide; last segment Exp. $\mathrm{P}_{2}-\mathrm{P}_{3}$ with 4 setae

8
*C.R. 5 times as long as wide; last segment Exp. $P_{2}-P_{3}$ with 5
and 6 setae respectively $-----\quad$. longicaudatus A. Scott
8. *C.R. without dorsal keel; 1st segment Enp. P3 with inner seta; last segment P_{4} with 3 setae \qquad P. borutzkyi Lang
*C.R. with dorsal keel; 1st segment Enp. P3 without inner seta;
last segment Enp. Ps with 2 setae $-\quad$ P. bahamensis Geddes
9. Principal terminal seta *C.R. not bulbiform at base .---------_- 10

10. *C.R. 5.6 times as long as wide; inner edge *C.R. straight and hairy P. minutus Lang
*C.R. 3.8 times as long as wide; inner edge *C.R. slightly convex and not haired P. minor (Thompson \& A. Scott)
11. 1st segment Enp. P_{2} with inner seta 12
lst segment Enp. P_{2} without inner seta 14
12. Last segment Exp. $P_{2}-P_{3}$ with 4 setae; principal terminal seta C.R. short and modified as bulb 13
Last segment Exp. $P_{2}-P_{3}$ with 5 and 6 setae respectively; prin- cipal terminal seta C.R. also bulbous but with long slender spine protruding distally

\qquad
P. chavei Coull
13. Last segment Exp. P_{4} with 7 setae; middle segment Exp. P_{4} with- out inner seta

\qquad
P. danielae Bodin
Last segment Exp. P ${ }_{4}$ with 6 setae; middle segment Exp. P ${ }_{4}$ with inner seta P. pauli Crisafi
14. *C.R. at most 3-4 times as long as wide 15
*C.R. 7-8 times as long as wide P. bermudae Lang
15. Last segment Exp. $\mathrm{P}_{2}-\mathrm{P}_{3}$ with 4 setae 16
Last segment Exp. $P_{2}-P_{3}$ with 5 and 6 setae respectively 17
16. Middle segment Exp. P_{4} with inner seta; total body length $>1 \mathrm{~mm}$ P. laticauda Por
Middle segment Exp. P_{4} without inner seta; total body length $0.6-0.85 \mathrm{~mm}$ P. medius Por
17. *C.R. without dorsal keel-P. parafurciger 18
*C.R. with dorsal keel-P. furciger 19
18. ${ }^{*}$ C.R. with pointed knob like inner protrusion at $1 / 2$ the lengthP. parafurciger parafurciger Geddes
*C.R. convex along inner margin with no distinctive knob like protrusion

\qquad
P. parafurciger carolinensis Coull
19. Last segment Exp. P_{4} with 5 setae and spines in allP. aff. furciger Por
Last segment Exp. P_{4} with 7 setae and spines in all (according to Bodin 1964) P. furciger Sars
20. *C.R. 4 times as long as wide with dorsal hairy keel; last segmentExp. $\mathrm{P}_{3}-\mathrm{P}_{4}$ with 6 and 7 setae respectively $-\ldots$.- . briani Petkovski
*C.R. 2.5-3 times as long as wide; no dorsal keel; last segmentExp. $\mathrm{P}_{3}-\mathrm{P}_{4}$ with 4 and 6 setae respectively ---- P. hardingi (Roe)
21. A_{1} of 8 segments, $\operatorname{Exp} . P_{5}$ ($\hat{0}$) with 4 setae 22
A_{1} of 9 segments, Exp. P_{5} ($\hat{\delta}$) with 5 setae 23
22. Exp. $P_{1} 3$ segmented, last segment with 4 setae
P. longipalpatus (Chappuis)
Exp. $P_{1} 2$ segmented, last segment with 5 setae
P. biarticulatus Wells
23. Principal terminal seta of *C.R. bulbous at base 24
Principal terminal setae of *C.R. not bulbous at base 25
24. Last segment Enp. $\mathrm{P}_{2}-\mathrm{P}_{4}$ with 2 setae; C.R. with no inner ex-pansion in proximal half, *C.R. 1.5 times as long as wide---
P. paraxenus Coull
Last segment Enp. Pr-Pd with 3 setae; C.R. with inner expansion in proximal half; *C.R. 2.5 times as long as wide

\qquad
P. mossmani T. Scott
25. Ist segment Enp. $P_{-}-P_{3}$ without inner seta 26
lst segment Enp. $\mathrm{P}_{2}-\mathrm{P}_{3}$ with inner seta 27
26. Last segment Enp. $\mathrm{P}_{2}-\mathrm{P}_{3}$ with 3 setae

\qquad
P. aegypticus Nicholls Last segment Enp. $\mathrm{P}_{z}-\mathrm{P}_{3}$ with 2 setae P. xenus (Kunz)
\qquadP. thiebauldi Petkovski
*C.R. without expansions at base 28
28. Last segment Exp. P4 with 7 setae 29
Last segment Exp. Ps with 6 setae P. paramossmani Lang
Last segment Exp. P، with 5 setae P. ponticus Apostolov29. *C.R. 3.3 times as long as wide, distal inner edge slightly con-cave, ${ }^{*}$ C.R. without dorsal keelP. berrieri Monard
*C.R. 1.3 times as long as wide, analoperculum hairy on distal

[^3]
Protogoniceps Por 1964

Remarks: Since Por's (1964) creation of the genus, no new species have been added. It is very difficult to ascertain the validity and/or the primary characteristics of the genus from Por's original description since his text and figures contradict each other. Lang (1965, p. 386) has already pointed out the discrepancy between the number of setae on the last exopodite segment of P_{1} (i.e., Por's text says 5 setae, yet he illustrates 4). Furthermore, Por (1964) states that "the endopodite of P_{1} is formed of 2 segments," yet his Plate 19, Figure 211 shows the P_{1} endopodite as 3 segmented.

Recently, Dr. Por sent his original figures (Por, pers. comm., 30 May, 1972) and it is obvious that mistakes were made in drafting and typing. The terminal segment of the P_{1} exopodite has 4 setae and the P_{1} endopodite is composed of 2 segments, thus clarifying the published discrepancies.

Por relates some features of Protogoniceps to Pteropsyllus, some to Tetragoniceps and some to Phyllopodopsyllus. With the descriptions of several new species and familial revisions (Lang, 1965; Wells, 1967), these relationships are no longer valid. For example, the 9 -segmented A_{1} and "primitive" P_{5} ($\%$ or δ ?) does not necessarily relate Protogoniceps to Tetragoniceps as one-half the known Tetragoniceps have 8 -segmented antennules and 3 of the known species have a confluent, not distinct ("primitive") of P_{5}. Pteropsyllus is known to harbor much variation within its single species (Wells, 1967) and setal formulae affinities between it and Protogoniceps may well be within the range of specific variation and lends no support to the relationship of these two genera.

Por (1964) states that Protogoniceps and Phyllopodopsyllus are related by the presence of the spur on second antennular segment. Lang (1965) has refuted the spur as a generic characteristic, and many known Phyllopodopsyllus completely lack the spur or have it in a greatly reduced condition (Table 2). It is, therefore, impossible to relate Protogoniceps to any of the known Tetragonicipitidae, but hopefully with continued collection more specimens will be collected and the intergeneric relationships elucidated.

Acknowledgments

I thank Miss Maria C. Perrone for sorting through most of the literature on the family and summarizing all the data, and Dr. J. B. J. Wells of the University of Aberdeen, Aberdeen, Scotland, for critically reviewing the manuscript prior to publication.

Literature Cited

Apostolov, A. 1968. Phyllopodopsyllus ponticus n. sp.-eine neue art Schwarzmeer-Harpacticoidea. Fragmenta Balcanica (Skopje) 6(23):209-213.
1969. Marine Harpacticoiden aus dem Kustensand von Bulgarien. Acta Mus. Macedon. Sci. Natur. 11 (6) : 111-127.
Brady, G. S. 1880. A monograph of the free and semi-parasitic Copepoda of the British Islands. Ray Soc. Publ. 2:1-182.
Bodin, P. 1964. Recherches sur la systematique et la distribution des copepodes harpacticoides des substrats meubles des environs de Marseille. Rec. Trav. Stat. Mar. d'Endoume 51(35):107183.
——. 1967. Catalogue des nouveaux copépodes harpacticoides marins. Mém. Mus. National d'Hist. Natur., sér. A 50(1): 76 pp.
Bowman, T. E. 1971. The case of the non-ubiquitous telson and the fradulent furca. Crustaceana 21(2):165-175.
Challis, D. A. 1969. An interstitial fauna transect of a Solomon Island sandy beach. Phil. Trans. Roy. Soc., London, ser. B 255:517-526.
Chappuis, P. A. et H. Kunz. 1955. Un nouveau Diagoniceps (Cop. Harp.) de la côte près de Dakar. Bull. Inst. Franc., Afr. Noire, sér. A 17(4):1020-1023.
Coull, B. C. 1969. Phyllopodopsyllus hermani, a new species of harpacticoid copepod from Bermuda. Crustaceana 16(1): 27-32.
1970. Two new species of Phyllopodopsyllus (Copepoda, Harpacticoida) from Bermuda. Crustaceana 19(2):119-124. 1971. Meiobenthic Harpacticoida (Crustacea, Copepoda) from the North Carolina continental shelf. Cah. Biol. Mar. 12(2):196-237.

Geddes, D. C. 1968a. Marine Biological Investigations in the Bahamas 3. Harpacticoid copepods belonging to the family Tetragonicipitidae Lang. Sarsia 32:21-37.
——. 1968b. A new species of Diagoniceps (Copepoda Harpacticoida) and two previously undescribed male harpacticoids from the Isle of Anglesey. J. Nat. Hist. 2:439-448.
Krishnaswamy, S. 1957. Studies on the Copepoda of Madras. Thesis, Univ. of Madras, 168 pp .
Lang, K. 1934. Marine Harpacticoiden von der Campbell-Insel und einingen anderen sudlichen Inseln. Lunds Univ. Arsskr., N.F. avd. 2, 30(14):1-56.
-_. 1948. Monographie der Harpacticiden, I. Hakan Ohlsson, Lund, 896 pp.
-1965. Copepoda Harpacticoidea from the Californian Pacific coast. Kungl. Svenska Vetensk. Hand. Fjarde 10(2):560 pp.
Marinov, T. 1971. Harpacticoides of the Bulgarian Black Sea coast. Proc. Inst. Oceanog. Fish. (Varna) 11:43-87 (In Bulgarian).
Nicholls, A. G. 1939. Marine harpacticoids and cyclopoids from the shores of the St. Lawrence. Le Naturaliste Canadian 66:241316.

Pesta, O. 1959. Harpacticoiden (Crust. Copepoda) aus submarinen Höhlen und den benachbarten Litoralbezirken am Kap von Sorrent (Neapel). Publ. Staz. zool. Napoli, Suppl. 30:95-177.
Petkovski, T. K. 1955. Zweiter Beitrag zur kenntnis der Harpacticidenfauna unserer Meereküste. Fragmenta Balcanica (Skopje) $1(15): 125-139$.
Por, F. D. 1964. A study of the Levantine and Pontic Harpacticoida (Crustacea, Copepoda). Zool. Verhand. (Leiden) 64:1-128.
——. 1965. Harpacticoida (Crustacea, Copepoda) from muddy bottoms near Bergen. Sarsia 21:1-17.
Roe, K. M. 1955. Genus Paraphyllopodopsyllus Lang. (Copepoda Harp.). Proc. Roy. Irish Acad., ser. B, 57:131-139.
Scott, T. 1892. Additions to the fauna of the Firth of Forth, 10th Ann. Rpt. Fish Bd. Scotl., pt. 3:244-272.
-1894. Additions to the fauna of the Firth of Forth, 12th Ann. Rpt. Fish. Bd. Scotl., pt. 3:231-271.
——. 1906. Notes on British Copepoda: change in names. Ann. Mag. Nat. Hist., ser. 7, 17:458-466.
Sewell, R. B. S. 1940. Copepoda-Harpacticoida. Sci. rep. Murray Expedit. 7(2):117-382.
Thompson, I. C. and A. Scott. 1903. Report on the Copepoda. Rept. Govt. Ceylon Pearl oyster Fish., Gulf Manaar 1:227-307.
Vervoort, W. 1964. Free living Copepoda from Ifaluk Atoll in the Caroline Islands. Bull. U. S. Nat. Mus. 236:431 pp.
Wells, J. B. J. 1961. Interstitial copepods from the Isles of Scilly. Crustaceana 2(4):262-274.

Wells, J. B. J. 1967. The littoral Copepoda (Crustacea) of Inhaca Island, Mozambique. Trans. Roy. Soc. Edinburgh 67(7):189358.

Wiborg, K. F. 1964. Marine copepods of Tristan da Cunha. Results Norw. scient. Expedit. Tristan da Cunha 51:1-44.
Willey, A. 1930. Harpacticoid Copepoda from Bermuda. Part I. Ann. Mag. Nat. Hist. ser. 10, 6(31):81-114.
1935. Harpacticoid Copepoda from Bermuda. Part II. Ann. Mag. Nat. Hist. ser. 10, 15:50-100.

24 Proceedlings of the Biological Society of Washington

[^0]: * Designates species in which the male is known.

[^1]: * C.R. refers to caudal rami

[^2]: ${ }^{1}$ Willey (1935) does not mention or figure the male caudal rami.
 ${ }^{2}$ Setal formula, male information from Bodin (1964)
 ${ }^{3}$ Por (1964) does not mention the A_{1}, but I assume it's the same as furciger.
 ${ }^{4}$ Por (1964) does not mention A_{1} in text; information from Por (pers. comm.).
 ${ }^{5}$ Lang (1965) lists the male of minor as known; however, I cannot find the male description anywhere in the literature. ${ }^{0}$ Male information from Vervoort (1964).

[^3]: * C.R. refers to caudal rami

